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Broken scaling in the forest-fire model

Gunnar Pruessner* and Henrik Jeldtoft Jensen†

Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2BZ, United Kingdom
~Received 17 January 2002; published 20 May 2002!

We investigate the scaling behavior of the cluster size distribution in the Drossel-Schwabl forest-fire model
~DS-FFM! by means of large scale numerical simulations, partly on~massively! parallel machines. It turns out
that simple scaling is clearly violated, as already pointed out by Grassberger@P. Grassberger, J. Phys. A26,
2081~1993!#, but largely ignored in the literature. Most surprisingly, the statistics do not seem to be described
by a universal scaling function, and the scale of the physically relevant region seems to be a constant. Our
results strongly suggest that the DS-FFM is not critical in the sense of being free of characteristic scales.
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I. INTRODUCTION

The Drossel-Schwabl forest-fire model~DS-FFM! @1# is
one of the paradigms of nonconservative self-organized c
cality ~SOC! @2#. Its importance comes primarily from th
fact that the model has nonconservative microdynamics
therefore, answered the question whether conservatio
necessary for criticality in driven systems.

The claim that the DS-FFM is critical comes from the fa
that it shows power-law-like behavior for several geome
cal properties of the dissipation events. The average siz
these is divergent in the so-called SOC limit, where all tim
scales get separated so that the rate of the external d
becomes infinitely slow and the total inflow diverges. If o
assumes stationarity, this is trivial to prove@1,3,4#. However,
as usual in numerical simulations, it is not possible to inv
tigate the model in the limit of divergent drive (u→0 in the
notation below!, as finite size limits the correlation lengt
and, therefore, destroys any possible criticality@4#. It is re-
markable that most of the literature available for this mo
is mainly concerned with finding critical exponents and ide
tifying supposedly critical quantities. It seems that no auth
question whether the model is critical at all and if so
which sense. In this paper we carefully investigate the ‘‘sc
ing function’’ of the cluster size distribution and show that
is indeed an open question whether the model is truly c
cal: Not only is there no way to prove its criticality, there
also numerical evidence that the model does not bec
scale-free.

II. DEFINITION OF THE MODEL AND METHODS

The model has been described several times and in g
detail elsewhere@1,3,4#. Therefore, the description present
here is rather succinct. The model is defined on
d-dimensional lattice of linear sizeL, where each lattice site
can be in one of two states, ‘‘occupied’’ or ‘‘empty.’’ Th
lattice is then updated according to the following rules.

~i! Driving: Choose randomly 1/u sites, one after the
other. If its state is empty turn it into occupied.

*Email address: gunnar.pruessner@physics.org
†Email address: h.jensen@ic.ac.uk
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~ii ! Relaxation: Choose one site at random. If it is emp
continue with the first step. Otherwise make ‘‘empty’’ all th
sites in the cluster the site chosen belongs to. In this case
update is considered to be successful. Continue with the
step.

Here a cluster is defined in the usual fashion as the se
occupied sites that are connected via nearest neighbor i
actions, i.e., two sites belong to the same cluster if they
nearest neighbors or there is a path between them along
sites that belong to the same cluster. We have applied p
odic boundaries in all our simulations and restricted o
selves to the two-dimensional square lattice.

The cluster removed in the second step is called
‘‘burnt cluster.’’ To measure the overall distribution of clus
ters within the system, one usually measures the size of
burnt cluster@4#, the distribution of which is biased by
factor s. To see that, we definen(s) to be the ensemble
averaged, site-normalized density of clusters of sizes in the
system. Then, the probability that a randomly chosen sit
connected to a cluster of sizes is sn(s), as in standard per
colation@5#. This distribution is probably the most importan
in the model. Other quantities are the distribution of t
burning time that is defined as the maximum Manhattan d
tance~shortest path on the square lattice! from the initially
chosen site of a burnt cluster to all other sites in the sa
cluster, and the correlation functions as defined and
cussed in Ref.@6#. In this paper we concentrate solely on th
distributionn(s).

Using a new implementation of the model@7# we are able
to simulate the system on very large scales and at the s
time keep track of theentire distribution n(s), instead of
measuring the biased distributionsn(s), as done usually@4#.
Between two updates the changes inn(s) are only of the
order 1/u, so it is a highly correlated quantity. However, b
using standard cluster labeling techniques@8#, it is possible
to calculate the full histogramn(s) essentially without in-
creasing the computing time, which depends almost ex
sively onu and is essentially independent of the system s
Compared to the standard simulation, we gain up to t
orders of magnitude in performance@19#. A similar method
was recently introduced for standard percolation@9#. Using
the same amount of computing time the results are sign
cantly less noisy than those of the standard implementa
~for example, Ref.@10#, which we have used as the referen
©2002 The American Physical Society07-1
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to check the validity of our results!. Large system sizes en
able us to rule out any finite size effects as described be
The results have been partly cross checked using a diffe
random number generator~all results presented here mak
use of the ran2 algorithm from Ref.@11#, and for checking
the ran1 algorithm from@11# has been used!.

Finite size effects have been ruled out by the followi
direct method: For each value of 1/u a significantly larger
system was simulated with exactly the same value for 1u.
The linear sizeL was typically increased by a factor 2. Th
smallest systems we used wereL51000, the largestL
532 000. By comparing the histograms of different syst
sizes in conjunction with the standard deviation calcula
for them, it is possible to decide whether a system size
affected by finite size effects or not. Compared to other sim
lations published@12,13# that also claim not to suffer from
finite size effects, our system sizes are huge. This sim
method of ‘‘redoing’’ all simulations and using lattices th
are much larger than actually needed has the obvious di
vantage of being inefficient, but there is probably no mor
direct way of identifying finite size effects@14#. This waste
of computing power is overcompensated by the efficiency
the algorithm and self-averaging@15#.

III. RESULTS

The focus of this paper is the presumably universal s
ing function of the distributionn(s). Similar to the correla-
tion function one expects

n~s;u!5s2tG„s/s0~u!… ~1!

if ‘‘simple scaling’’ applies, which is already known not to b
the case in the presence of finite size effects@13#. The
L-dependence of this quantity is omitted in the followin
wherever the context allows it. It is worthwhile to note th
this is usually thedefinitionof the exponentt. The function
G is the~presumably! universal scaling function that depend
only on the ratios/s0(u), wheres0(u) is theonly scale of the
distribution. This scale depends only on the external par
eters, in our caseu. Simple scaling allows another scal
namely, the lower cutoff, but this is fixed or at least bound

The functionG(x) is usually smooth for small values ofx,
therefore, it does not make a big difference whether we
vestigaten(s) or

ñ~s;u!5
n~s;u!

n~1;u!

5
G~s/s0~u!!

G~1/s0~u!!
s2t. ~2!

That this particular choice of the normalization does not
fect the overall results can be seen in Table I, where
absolute value ofn(1,u) is listed for different values ofu.
Also shown in this table is the first moment of the distrib
tion or the average density of trees, which is defined as

r5(
s

sn~s;u!, ~3!
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TABLE I. Static quantities for different choices ofL and 1/u.
The estimation of the standard deviation of the tree densityr,
s2(r)5^r2&2^r&2, where the average runs over the ensemble
unfortunately based only on a small subset of the configurati
produced, and in the case of the large systems (L>16 000), only on
a fraction of the lattice. However, it is apparent that it behaves
1/L, as expected for a system without finite size effects. The den

of clusters of size 1,n(1), serves as the normalization ofñ. The
average cluster size is denoted by^s&, for definition see Eq.~4!, but
due to a truncation in the histogram, for some of the simulation
the range 2000<1/u<16 000 the number presented is actually t
average size of the burnt cluster. In the stationary state it is—a
from statistical fluctuations—also given by (12^r&)/(u^r&) @4#.
Values of 1/u andL printed in bold indicate results shown in Fig. 3
the other results are only for comparison. All data are based o
3106 ~successful! updates~see Sec. II! for the transient and statis
tics, apart from those printed in italics that are based on short r
(53106 updates for the transient and 13106 updates for statistics!.

1/u L ^r& As2(r) n(1) ^s& (12^r&)/u^r&

125 1000 0.3797 0.0060 0.04553 204.07 204.18

125 1000 0.3798 0.0058 0.04552 203.81 204.15

125 4000 0.3798 0.0014 0.04553 203.88 204.10

125 4000 0.3798 0.0015 0.04552 203.77 204.10

250 1000 0.3876 0.0083 0.04451 395.03 395.06

250 1000 0.3875 0.0082 0.04452 394.08 395.15

250 4000 0.3877 0.0022 0.04454 394.97 394.89

250 4000 0.3877 0.0021 0.04454 395.29 394.91

500 1000 0.3932 0.0117 0.04380 764.73 771.75

500 1000 0.3932 0.0119 0.04380 764.81 771.77

500 4000 0.3934 0.0031 0.04382 771.12 770.88

500 4000 0.3934 0.0030 0.04382 771.90 770.87

1000 1000 0.3972 0.0169 0.04328 1495.36 1517.91

1000 1000 0.3971 0.0168 0.04328 1490.05 1518.00

1000 4000 0.3976 0.0043 0.04331 1510.85 1515.00

1000 4000 0.3976 0.0043 0.04331 1513.13 1514.81

1000 8000 0.3976 0.0021 0.04332 1510.10 1514.91

2000 4000 0.4005 0.0060 0.04296 2976.34 2993.35

2000 4000 0.4005 0.0062 0.04297 2990.50 2993.15

2000 8000 0.4006 0.0030 0.04297 2995.67 2992.56

4000 4000 0.4026 0.0089 0.04273 5929.24 5935.91

4000 4000 0.4025 0.0089 0.04273 5930.97 5938.03

4000 8000 0.4026 0.0048 0.04274 5931.32 5935.15

4000 8000 0.4026 0.0046 0.04273 5935.36 5936.47

8000 4000 0.4040 0.0135 0.04255 11786.97 11799.72

8000 4000 0.4041 0.0135 0.04255 11788.90 11799.07

8000 8000 0.4041 0.0068 0.04257 11801.31 11795.98

8000 8000 0.4041 0.0068 0.04257 11792.82 11795.38

16000 4000 0.4052 0.0199 0.04244 23430.01 23481.82

16000 8000 0.4054 0.0096 0.04243 23466.93 23467.22

16000 8000 0.4054 0.0098 0.04243 23446.10 23465.64

16000 160000.4054 0.0052 0.04245 23449.31 23466.57

32000 16000 0.4066 0.0075 0.04232 46443.83 46701.82

32000 320000.4066 0.0032 0.04233 46731.44 46698.51

64000 320000.4078 0.0042 0.04220 91148.64 92952.40
7-2
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BROKEN SCALING IN THE FOREST FIRE MODEL PHYSICAL REVIEW E65 056707
and the second moment of the distribution,

^s&5

(
s

s2n~s;u!

(
s

sn~s;u!

, ~4!

which is the average size of the cluster connected to a
domly chosen occupied site.

Before presenting the actual results, we first discuss
numerical quality of the results.

A. Avoiding finite size effects

Throughout this paper we initially performed 53106 suc-
cessful updates~as defined in Sec. II! as transient~and, there-
fore, rejected them! and the same number for producing s
tistics, apart from runs for calculating error bars, where o
106 updates have been used for statistics, as shown belo
is known that the transient can be very long@6# @note that the
time unit in Ref.@6# is expressed in our units by multiplyin
it with (1/u)/rL2#, but in all cases presented the number
initial steps seemed to be more than sufficient. Numer
checks indicate that the cluster size distribution is very sta
against the size of the transient, i.e., even a transient th
presumably too short produces reasonable results forn(s).

All systems have been initialized by a random indep
dent distribution of trees with density 0.41.

The standard deviation of the binned histogram is
completely trivial to calculate. In particular, its computatio
requires a significant amount of CPU time, and was, the
fore, only calculated for the smaller system sizes~up to L
58000) and in shorter runs~only 106 updates for statistics
but 53106 for transient!. We resorted to visual examinatio
for the larger systems when comparingñ(s;u,L) for differ-
ent system sizes. Figure 1~a! and 1~b! show the ratio of
ñ(s;u,L) for two different system sizes. A deviation of th
ratio from 1 indicates a difference in the statistics and, the
fore, the presence of finite size effects. Figure 1~a! shows a
typical case that we accepted as a reasonable agreem
HereL154000 andL258000 do not seem to differ for 1/u
52000. Figure 1~b! shows a case of finite size correctio
that we have dismissed~note the different scales in the tw
graphs!. It differs from Fig. 1~a! only by L151000.

Figure 2 illustrates the strong agreement ofñ(s;u) at the
same value ofu for the same two different sizesL as in Fig.
1~a!. The two sets of data are virtually indistinguishable, b
in this kind of plot it is also almost impossible to see
difference between the data ofL151000 andL258000, as
shown in the inset of Fig. 2. This is also the case with
rescaled data below, and the use of very large syst
throughout this paper might, therefore, be ‘‘overcautious’’
avoiding finite size effects, although such large sizes are
viously required for an accuratequantitativeanalysis of this
model. However, when it comes only to qualitative analys
such a judgment seems to be justified. On the other hand
increase in system size hardly increases the computing
and affects ‘‘only’’ the memory requirements, which force
05670
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us to implement the algorithm for parallel machines. T
side effect of using multiple CPUs at the same time is
significant reduction of the simulation time especially f
large values of 1/u, a fact which compensates the complic
tions of parallel coding.

Another indicator for the absence of finite size effects
the scaling of the standard deviation ofr: If the lattice can be
split into independent parts, i.e., if subsets of the lattice

FIG. 1. Ratio r (s;u,L1 ,L2)5ñ(s;u,L1)/ñ(s;u,L2) with 1/u
52000 for two pairsL1 ,L2 with error bars~standard deviation of 1;
the error bars as well as the data shown are exponentially binn!.
The data are from short runs (106 updates for statistics!. Finite size
effects have been considered negligible under the condition
~almost all! error bars for this ratio have covered 1~marked by a
dashed line! in the relevant range.~a! L154000 andL258000:
almost no finite size effects, the deviation from 1 is probably due
noise. Note the fine scale of the ordinate.~b! L151000 andL2

58000: Systematic, strong finite size effects fors*104. The scale
of the ordinate is five times larger than in~a!. Data of this quality
have been dismissed.

FIG. 2. The binned histogramñ(s;u,L) for two different values
of L and fixedu as in Fig. 1~a!. In this plot the two histograms are
virtually indistinguishable. However, note that the deviations sho
on Fig. 1~b! would also hardly be visible in this type of plot, a
shown in the inset.
7-3
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GUNNAR PRUESSNER AND HENRIK JELDTOFT JENSEN PHYSICAL REVIEW E65 056707
be considered as independent, the standard deviationr
should scale like 1/L for different values ofL at given 1/u.
Such a behavior can be seen in Table I, although the stan
deviation ofr could be calculated only roughly. This migh
explain the slight mismatch for 1/u532 000, L
516 000,32 000.

For the highest values of 1/u we could not yet do the
comparison to another system, so the curve for the lar
value of 1/u in Fig. 3 is dotted, as their quality is not known
However, it is reasonable to assume that it is not affected
finite size effects.

B. The scaling function

Comparing the different histogramsñ(s;u) for different
values of 1/u in a plot enables us not only to find the exp
nentt, but also to find the universal functionG as defined in
Eq. ~1!. A rough, naive estimate oft is given byñ(s;u) fitted
againsts2t, which gives a value oft* '2.1 in our case.
Plotting nowñ(s;u)st* double logarithmically should allow
us to find the ‘‘true’’ value oft by performing a data col-

FIG. 3. The rescaled and binned histogramñ(s;u)st* , where
t* 52.10 for 1/u5125,250,500, . . . ,32000,64 000~as indicated!
in a double logarithmic plot. The linear sizeL is chosen according
to the bold printed entries in Table I and large enough to ens
absence of finite size effects. The error bars are estimated
shorter runs. The rightmost histogram~dotted in all figures, 1/u
564 000) could not be cross checked by another run~see text!.
Maxima are marked by arrows pointing upwards, minima
marked by arrows pointing downwards. The dashed lines belon
different exponents, whose values are specified as the sum o
slope in the diagram andt*, i.e., a horizontal line would corre-
spond to an exponent 2.1. The short dashed line represents
mated exponents for different regions of the histogram~2.22 within
approximately@20,200# and 2.19 within@200,2000#!, the other ex-
ponents are from literature, namely, 2.14~3! in Refs. @3,4# and
223/91'2.45 in Ref.@12#. Since it was impossible to relate thes
exponents to any property of the data, the exact position of the l
associated with them was chosen arbitrarily.
05670
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lapse, i.e., choosingt* in such a way that horizontal shifts
@corresponding to the choice of the scales0(u) in the scaling
function# make all curves collapse. This is shown in Fig.
wheret* 52.1 was chosen so that the maxima for the seco
bumps are almost equally high: denoting their position on
abscissa for each value ofu by smax(u), we have chosent*
such that

ñ„smax~u!;u…smax
t* ~u!'const. ~5!

According to Eq.~1! the constant is simply the maximum
value ofG, namely,G„smax(u)/s0(u)…, where the value of the
argument is, therefore, the same for allu.

The value oft* is close to~but not within the error of! the
exponent found in the literature,t52.14(3) @3,4# (t
52.15(2) in Ref.@16#, t52.159(6) in Ref.@6#!, which is
shown in the same figure for comparison. However, it
impossible to force the minima~see the down pointing mark
in Fig. 3! to the same height while maintaining the constra
that the maxima remain aligned, i.e., these minima canno
a feature of the same universal scaling function. Otherw
Eq. ~1! would hold and the quantity

ñ„smin~u!;u…smin
t* ~u!, ~6!

wheresmin(u) denotes the position of the minima, would a
sume the same value for allu, because they are local minim
of G, which are supposed to be the same for allu.

Since these minima cannot be included in the simple s
ing defined in Eq.~1!, they must be explicitly excluded by
introducing a lower cutoff, so that simple scaling suppose
sets in only above these cutoffs, excluding especially
minima. However, such a lower cutoff would apparen
have to diverge for 1/u→`—something that is certainly be
yond any established concept of scaling. Even when acc
ing this peculiar scaling behavior, a data collapse for
second bump still seems to be unsatisfactory, as show
Fig. 4.

If one accepts a divergent lower cutoff of the scaling fun
tion, one has to face the fact that this would describe
behavior ofñ in a region that becomes physically less a
less interesting in the limit 1/u→`, because the vast majo
ity of events are situated at smalls and as the second bum
moves out to infinity, the scaling function hence covers
smaller and smaller part ofñ. However, only a region ofñ,
which covers a nonvanishing fraction of events can bephysi-
cally relevant.

Concentrating now on the behavior ofñ up to the mini-
mum ~see arrows pointing downwards in Fig. 3!, one finds
that this region is also badly described by a function like E
~1!. First of all, the question of which region is supposed
described by the function needs to be answered. A uni
lower cutoff and au dependent upper cutoff needs to b
found. At first view it looks appealing to choose these tw
marks such that they cover the set of data, where the cu
fall on top of each other. In this case the lower cutoff wou
be 1 and the upper cutoff,snaive, would have a value smalle
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BROKEN SCALING IN THE FOREST FIRE MODEL PHYSICAL REVIEW E65 056707
than the minima marked by downwards pointing arrows
Fig. 3. However, this would be described by a function li

ñ~s;u!5 f ~s!G~s/snaive!, ~7!

rather than Eq.~1!. Note theparameter independentfunction
f (s) describes the shape of the curve, whileG(s/snaive) is a
sharp cutoff function. Equation~7! does not allow for an
exponent, wheref (s) is an arbitrary function. Writing it as

f ~s!5s2t~a01higher2order corrections! ~8!

definest to be the steepest descent of this part of the cu
and gives a value betweentstp52.22 andtstp52.19~see Fig.
3!.

This concept appears to be rather naive—on the o
hand, it is hard to assume that Eq.~1! can still hold: it would
correspond to Eq.~7! with f (s) replaced byst, which is a
straight line in a double logarithmic plot. Therefore, Eq.~1!
can apply only to a region in Fig. 3 where the data that
on top of each other form a straight line. Those features
already collapsing would then collapse when properly til
~choosing the rightt) and shifted~choosing the rights0).
Introducing a lower cutoff ats510 and discarding the dat
for 1/u<2000 then leads to a data collapse in a narrow ra
as shown in Fig. 5. It is worthwhile mentioning that even f
some 10,s,200, namely, for values ofs between the
squares and the filled circles, none of the data collapse.
exponent used in this ‘‘collapse’’ iststp52.19, as mentioned
above.

By considering the functionf (s) it becomes apparent tha
ñ, and therefore the model, cannot be scale free: it depe
on the fixed, microscopic scales51. This entails that it is
always possible to tell 1/u by looking only at theshapeof ñ;
a diagram showing only this shape, without any scales on

FIG. 4. The rescaled and binned histogramñ(s;u)st* ,
vs s/smax(u), where t* 52.10 for 1/u5125,250,500, . . . ,
32 000,64 000 in a double logarithmic plot. The scalessmax(u) by
which the histograms have been shifted are the maxima marke
Fig. 3, so that a data collapse would be possible. The arrow i
cates the order of the data in increasing 1/u.
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axes, reveals 1/u, since a scale is intrinsically given by th
features off (s). One would only need to rescale and tilt
until it fits the plot of Fig. 3 and one could thus identify 1/u.
Only if f (s) were scale-free, i.e., a straight line in a doub
logarithmic plot, this would not be possible.

C. Two length scales

That ñ contains features to define at least two scales
apparently diverge in 1/u with different exponents, become
clear when analyzing the scaling of the minima and maxi
as marked in Fig. 3, using the definitions

smin~u!}~1/u!xmin, ~9!

smax~u!}~1/u!xmax. ~10!

Of course, the exact position of the extrema ofñ(s;u)st*
depends on its tilt, i.e., on the choice oft*. However, their
scaling in 1/u does not depend strongly on this choice.
particular,xmin andxmax are different for all choices oft*. A
plot of smin(u) versus 1/u for different values oft* is shown
in Fig. 6. For small values of 1/u the minimum is not pro-
nounced enough to survive for large values oft*, so these
curves do not give a data point. Using a linear fit
logsmin(u) versus log(1/u) of the minimum as found in the
rescaled (t*) and binned histogram, gives an ‘‘exponen
betweenxmin50.93 andxmin50.98. The same procedure a
plied to the maxima gives an ‘‘exponent’’ in the rangexmax
51.18 andxmax51.22, as shown in Fig. 7. One may expe
that xmin tends towardsxmax for decreasingt*, as smin in-
creases and might enter the scaling region ofsmax, but nei-
ther exponent exhibits a systematic variation, and the qua

in
i-

FIG. 5. The rescaled and binned histogramñ(s;u)ststp, versus
s/smin(u), where tstp52.19 for 1/u54000,8000,16 000,32000
64 000 in a double logarithmic plot. The scalessmin(u) by which the
histograms have been shifted are slightly different from the mini
marked in Fig. 3, to make the collapse as good as possible.
squares and the filled circles marks510 ands5200, respectively,
for orientation and relation to other figures. The arrows indicate
order of the data in increasing 1/u.
7-5
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GUNNAR PRUESSNER AND HENRIK JELDTOFT JENSEN PHYSICAL REVIEW E65 056707
of the fit certainly suffers from the rough procedure th
searches for the extrema in thebinned histogram. This is
unfortunately necessary because of statistical fluctuation
conjunction with the absence of error bars for all data poin

The scale of the clusters,smin/max is related to the correla
tion lengthj by the fractal dimensionm, i.e., ~see Ref.@4#!

smin/max}jmmin/max. ~11!

Sincej}1/un, one should expectn5xmin/max/mmin/max. The
minima are supposed to be dominated by smaller, fra
events~see Ref.@12#!, so mmin51.96(1) @4# and, therefore,
nminP@0.47,0.50#. The maxima are more likely to be dom
nated by compact fires, sonmaxP@0.59,0.61#. It is unclear
how the two exponentsnmin/max are related exactly to the
exponents of the two correlation lengths found by Honec
and Peschel@6# for the connected correlation functionn
50.576(3) and for the tree-tree correlation functionn
50.541(4).

FIG. 6. The position of the minimum in the binned and resca
histogram for different values oft* 52.04,2.08,2.10,2.12,2.16. Th
exponents shown in the plot are for comparison only.

FIG. 7. The position of the maximum in the binned and resca
histogram for different values oft* 52.04,2.08,2.10,2.12,2.16. Th
exponents shown in the plot are for orientation only.
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IV. DISCUSSION

Prima faciethe DS-FFM looks like a percolation proces
and one might naively think that it is indeed a percolati
process that organizes itself to the critical density: sites
occupied randomly and independently and~at least in the
thermodynamic limit! there is only one cluster that is re
moved with nonvanishing probability, namely, the largest.
this way the density of occupied sites is automatically
duced below the percolation threshold whenever the thre
old is reached. It is puzzling how remarkably close the t
density in the DS-FFM is to the density ofemptysites in
critical site percolation on a square lattice@rFFM'0.4078
and 12rperc50.40 725 379(13) ~Ref. @9#! respectively#.
However, the removal process involved in the DS-FFM
troduces spatial correlations that are not present in the s
dard percolation. These correlations are expressed, for
ample, in the form of a patchy tree density distribution@12#.

The purpose of this paper isnot to add yet another mode
to the enormous variety of SOC models. However, in or
to investigate certain features of the given model and iden
the underlying mechanisms, it makes sense to modify
slightly. The outcome for the histogram of the DS-FFM
modified such that thelargestcluster is removed after eac
driving step, as shown for a few values of 1/u in Fig. 8. The
distinctive feature of a minimum that scales differently fro
the maximum is again present, as the peaks of the max
have approximately the same height, while the height of
local minima varies among different values ofu. The inset of
this figure shows the histogram on the same scale as F
together with the data of the original model~dotted! with the
corresponding values ofu. One can understand that they d

d

d

FIG. 8. The rescaled and binned histogramñ(s;u)st* ~again
t* 52.10), for a modified model, where the largest cluster in
system is removed after each driving step, for 1u
51000,2000,4000 ~as indicated! with linear sizes L
52000,2000,4000. The inset shows the same data on the sca
Fig. 3 for comparison. The data for 1/u51000,2000,4000 of the
original model as shown in Fig. 3 are dotted. The peculiar beha
of the different height scaling of the minimum and the maximum
again visible.
7-6
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not fall on top of each other because the relaxation rule in
modified model erases much larger clusters than in the o
nal model.

Figure 9 shows a second modification of the model, wh
again thelargestcluster is removed during relaxation and
addition the driving is changed such that the density of tre
r, is the same before each relaxation; the trees removed
ing the relaxation are just filled in randomly afterwards. Th
model differs from standard percolation only by its updati
scheme@20#. In order to compare the outcome with the orig
nal model, the values ofr have been chosen close to th
values given in Table I. Indeed, the feature of different sc
ing of the extrema is still present, but it disappears co
pletely if the density is increased torperc50.592 746@9#,
which is shown in the same figure as the large bump. T
curve does not vary much if a much smaller system siz
simulated at this density, so we expect it essentially to be
of finite size corrections. Since it represents acorrelatedper-
colation process, it is just consistent that this bump does
cover the exact results for the lattice animals of stand
percolation@5,17,18# at r5rperc, shown as filled circles in
Fig. 9. The dotted curves in the figure show the correspo
ing data of the original model. Again they do not match ap
from the region of very smalls. Unfortunately, the simula-
tions of the so-modified model are very expensive in C
time, because the mass of the largest cluster needs t
refilled after each relaxation, so that only 50 000 updates
transient and statistics could be done.

FIG. 9. The rescaled and binned histogramñ(s;r)st* ~again
t* 52.10) for a modified model, where the largest cluster in
system is removed in each relaxation step and the correspon
number of trees is filled back into the system afterwards. The th
small values ofr chosen asr50.3975, 0.4005 0.4025 correspon
~up to the last digit! to the values of the tree density for 1/u
51000,2000,4000, respectively, see Table I. The linear size waL
51000,2000,4000. The corresponding data of the original mo
are shown dotted. The peculiar behavior of the different height s
ing of the minimum and the maximum is again visible~a correct tilt
t* would make it even more pronounced!, but disappears obviously

for r5rperc—for these data it is relevant to mention thatñ(s) was
measuredafter the relaxation. The filled circles show the exact r
sults for the lattice animals@5,17,18# at r5rperc.
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Since the feature of different scaling survives the mod
cations described above, it seems reasonable to assume
any relaxation rule that favors the largest cluster leads to
peculiar behavior. Its disappearance at high densities ca
explained by the extremely small cutoff in the distributio
which leads to a domination of the statistics by very sm
clusters, while a single, enormously large one dominates
burning ~the average size of the burnt cluster forr5rperc
was 355 811!. However, much more careful and detailed i
vestigations of models, such as the modification descri
above are required to gain a full understanding of the und
lying mechanisms. In particular, this should include a mo
fication of the rules such that the feature disappears.

Honecker and Peschel@6# have calculated the correlatio
length not only for the probability that two sites belong to t
same cluster, but also for the probability that two sites
occupied at all. The correlation function for the latter is
course ad peak in ordinary percolation, as there are no s
tial correlations for the distribution of occupied sites by co
struction. However, in the DS-FFM the correlation length f
this quantity, j, is finite and seems to diverge when a
proaching the critical point. It is highly remarkable that H
necker and Peschel concluded from their simulations
this correlation length diverges slightlyslower than the cor-
relation length of the probability for two sites to belong
the same cluster,js . This seems to indicate that for suffi
ciently large scales the spatial correlation of the occupa
probability becomes arbitrarily small, so that on sufficien
large scales the DS-FFM occupation is uncorrelated a
therefore, tends to standard percolation. In other words
seems to be possible to rescale or ‘‘renormalize’’ the D
FFM to make the occupation correlation arbitrarily sma
This would introduce higher order interactions, as kno
from standard real space renormalization group and wo
explain the difference in critical density between the resca
DS-FFM and standard percolation. However, if this ‘‘ma
ping’’ is valid, one should find the exponent for the dive
gence ofjs /j to be the same as in standard percolation,
this is precluded by numerics.

It has been suggested at least twice@6,12#, that the DS-
FFM is a superposition of cluster distributionsnperc(s,p) of
standard percolation for a whole range of concentrationp,
weighted by a certain distribution functionw(p), i.e.,
*0

1dp w(p)n(s,p). Obviously, such an assumption neglec
spatial correlations. We recall the following result from sta
dard percolation theory@5#,

n~s,p!}s2tC „2s/~p2pc!
21/s

…, ~12!

whereC denotes the cutoff function and the exponentss and
tperc have their standard definitions. Assuming that t
weighting functionw(p) is analytic around the critical con
centration in standard percolationpc , Eq. ~12! leads to

E
0

1

dpw~p!n~s,p!}s2(tperc1s). ~13!

e
ing
e

el
l-
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This gives rise to an exponentt5223/91'2.45; however,
this is definitely not supported by numerics~see Fig. 3!.

It remains completely unclear how to characterize
scaling of the DS-FFM in two dimensions. Apparently it
not a mere superposition of two simple scalings, as rece
speculated@12#. Moreover, the model does not seem to
scale-free as described above and it does not seem t
possible to identify a unique power-law behavior of the clu
ter size distribution. Nevertheless,effectivepower-law be-
havior over restricted regions has clearly been produced
the model, making it potentially relevant to observation.

All we can conclude is that the DS-FFM is not critical
the sense of simple scaling. It reminds us that a diverg
moment~here^s&, the second moment! can be regarded as
unique sign of emergent scale invariance only if we are c
tain that one single scale is sufficient to characterize the
tem. If there is more than one relevant scale, different pr
erties of the system might depend on different scales
may or may not diverge.

Note added in proof. Recently, the authors were informe
that P. Grassberger had reached similar conclusions in a
cent paper@21#, where the model is studied on even larg
tt

a
0/

n-

05670
e

ly

be
-

y

nt

r-
s-
-

at

re-
r

scales, but probably with somewhat less statistics. This pa
does not focus solely on the peculiar behavior ofn(s) .
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